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We discuss the kinetics of order—order and order—disorder transitions in weakly segregated diblock copolymers.
A theory is developed based on the anisotropic fluctuations in the ordered phases. These fluctuations play two
crucial roles: first, they determine the stability limit of the initial structure and, second, they are responsible for the
emergence of new structures, whether these are the final equilibrium states or transient states during the transition.
A linear stability analysis allows us to identify the largest fluctuation modes under both equilibrium and
nonequilibrium conditions. By combining the order parameter of the initial structure with the largest fluctuation
modes into a simplified multimode model we are able to describe qualitatively the full nonlinear evolution of the
system after sudden temperature jumps beyond the spinodal of the initial phase. Our theory successfully explains
our earlier results from direct Cahn—Hilliard-type numerical simulations. Our predicted kinetic scenarios are in
accord with available experiment®. 1998 Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION In this paper, we address questions concerning the
kinetics of various order—order and order—disorder transi-
tions in weakly segregated diblock copolymers. Specifi-
cally, how does the system transform from one
microstructure to another after a sudden temperature
change? (This question is a valid one because in the weak
segregation limit, phase transitions can be effected by
changing the temperature (sdeéigure 1).) Are there
interesting intermediate states during the transition? If so,
IWhat is the nature of these intermediate states? Apart
from the fundamental interests, a thorough study and
understanding of the kinetic pathways in phase transitions
of ordered block copolymer phases may help in designing
suitable processing routes for obtaining ordered structures
for nanotechnology applications.

Recently, we have studied the kinetics of several order—
OIorder and order—disorder transitions after sudden tempera-
ture jumps in weakly segregated diblock copolymers
using a time-dependent Ginzburg—Landau (TDGL)
approach (also called the Cahn—Hilliard approach by
i other author$)®. Direct numerical simulation of the
TDGL equations shows that, depending on the extent of
the temperature jumps, these transitions often occur in
several stages and can involve nontrivial intermediate
states. For example, we find that melting of the hexagonal
cylinder phase can involve the transient appearance of
density modulations along the cylinders for small tempera-
ture jumps (which are nevertheless beyond the spinodal of
the initial cylinder phase). Transition from the lamellar
phase to the hexagonal cylinder phase goes through a
perforated lamellar state within a certain temperature
range. Our numerical findings are elucidated by a multimode
*To whom correspondence should be addressed analysis under the single wave number approximation. The

Dynamics of phase transitions is one of the outstanding
problems in statistical physics. The most well-known and
widely studied example is that of demixing (spinodal
decomposition) in a binary solution or alloy upon a sudden
temperature change below the spinodal line in the phase
diagram. There the issues of interest are the domain growth
dynamics, characterized by both the morphology of the
domains and their sizes. It is well known, for example, that
the domain growth dynamics in the late-stage spinoda
decomposition follows a dynamic scaling, characterized
by a growth exponeht

The dynamics of phase transitions in self-assembling
complex fluids is considerably richer than spinodal decom-
position in simple binary liquids or alloys and is yet
relatively unexplored. Block copolymers, because of the
softness of interactions and long relaxation times associate
with the relevant structural changes, offer some unique
opportunities for experimentally studying the pathways of
phase transitions in these systems.

One of the most fascinating properties of bloc
copolymers is their ability to self-assemble into a variety
of ordered microstructures. The simplest block copolymer
system is an undiluted diblock copolymer with two
incompatible blocks where, upon decreasing the tempera-
ture and/or increasing the molecular weight, a variety of
ordered microstructures, such as body-centre-cubic (BCC)
spheres, hexagonally ordered cylinders (HEX), lamellae
(LAM), and a bicontinuous gyroid (G) structure have been
obtained. The equilibrium morphological behaviours of
such simple diblock copolymers are now well understobd
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18 This paper is organized as follows. In the next section,
we discuss anisotropic fluctuations in a stationary ordered

16 phase. This study allows us to obtain the fluctuation
spectrum from which we can identify the least stable

~ 14 modes. The vanishing of the eigenvalue associated with
= the least stable modes signals the limit of stability of the
1o f structure. A key result in this section is that the least
stable modes are generally located on reciprocal lattice

positions that are different from those constituting the

1%_35 0.40 0.45 0.50 initial ordered structure. This is the very reason for the

f emergence of new structures. In Section 3, we discuss
the kinetics of order—order and order—disorder transitions
Figure 1 The meanfield phase diagram for a conformationally symmetric \nder nonequilibrium conditions. First, we perform a linear
diblock copolymer system, calculated using the free energy equation (2) stability analysis on the dynamic equation. A key step here
is the separation of the free energy driving force into a
analysis reveals that the geometric characteristics of the freemeanfield, deterministic part and a fluctuating part. The
energy surface, particularly saddle points and ridgelike deterministic contribution serves primarily to change the
features, are responsible for the nontrivial intermediate amplitudes of the density waves of the initial ordered phase.
states on the kinetic pathways. On the basis of this analysis, The fluctuating part determines the stability of the meanfield
a generalized kinetic ‘phase diagram’ is constructed, which trajectory, the deviation from which leads to the emerg-
is able to account for the different scenarios observed in theence of new structures. The most unstable modes give
numerical simulation. the directions of deviation from the meanfield path.
Our analysis in Ref$>, while essentially correct, isbased Evolution beyond the linear regime is then studied by
on simple symmetry arguments and physical intuition. focusing on these most unstable modes together with the
Recently, Laradjet al.®, using an RPA theory of anisotropic  meanfield order parameter associated with the initial
fluctuations developed by this group of researcherave structure. This procedure provides the justification for the
addressed the stability of ordered phases. By expandingmultimode analysis used in our earlier work. Combining
the free energy around the exact meanfield solutions tothe linear stability analysis with the simplified multi-
second order, these authors examined the anisotropicmode analysis, we arrive at a fairly complete picture of
fluctuation in the various ordered phases. The most unstablethe various kinetic scenarios. Two transitions, the lamellar
fluctuation modes are used to infer the kinetic pathways (LAM) to hexagonal cylinder (HEX) transition, and
of the order—order transitions. While it is true that the most the hexagonal (HEX) to disorder (DIS) transition, are
unstable modes in an ordered phase are closely relatedused as concrete examples to illustrate the theoretical
to the transition kinetics, this information is inadequate to concepts. Section 4 is a summary of our main results,
determine the actual pathways of the transitions for two together with discussions of relevant experiments, and some
reasons: first, the stability analysis by Laradfi al. is a future issues.
linear one and can only predict the fastest growing modes
when an ordered structure reaches its spinodal, but canno
predict the subsequent evolution of the system. SecondIy%FAgléioEL%%PgﬁgléggTUAﬂONS AND STABILITY
and more importantly, their stability analysis is on a
stationary structure where the first derivatives of the free In this section, we discuss anisotropic fluctuations in a
energy vanish, but usually the various order—order and stationary ordered structure. The purpose of this section is
order—disorder transitions are caused by large deviationstwo-fold: first, the analysis allows us to identify the high
from equilibrium conditions which result in a large temperature spinodal and the largest fluctuation modes in
deterministic driving force given by nonvanishing first an ordered structure; and second, and more relevant to the
derivatives of the free energy. This is important, for transition kinetics, the method of analysis can be easily
example, for explaining why hexagonal cylinders melt extended to nonequilibrium conditions.
uniformly for large temperature jumps but proceed through At a stationary state (stable, metastable, or state corres-
a BCC-modulated hexagonal cylinder state when the ponding to a saddle point on the free energy surface), the
temperature jump is sméf? first derivatives of the free energy with respect to the order
In this paper, we summarize our most recent efforts in parameters (to be specified later) vanish. The stability of
understanding the kinetics of order—order and order— the structure is determined by the matrix of the second
disorder transitions. A unified framework is developed derivatives. A stable structure, either locally or globally, is
based on anisotropic fluctuations in the ordered phases.characterized by the positive definiteness of the matrix of
These fluctuations are shown to play two crucial roles: the second derivatives. The system reaches its spinodal
first, they determine the stability limit of the initial structure when the lowest eigenvalue of the matrix of the second
and, second, they are responsible for the emergence ofderivatives vanishes.
new structures, whether these are the final equilibrium states The stability of a structure is intimately related to
or transient states during the transition. A linear stability the spontaneous, thermal fluctuations in that structure. A
analysis allows us to identify the largest fluctuation modes structure is stable if the mean-square fluctuations of the
under both equilibrium and nonequilibrium conditions. By order parameter are finite, and becomes unstable when any
combining the order parameter of the initial structure mean-square fluctuations diverge. In an ordered diblock
with the largest fluctuation modes into a simplified multi- copolymer phase, the fluctuations are generally anisotropic
mode model, we are able to describe qualitatively the full because of the anisotropy of the ordered structure. The
nonlinear evolution of the system after sudden temperaturestructure reaches its spinodal when the largest fluctuation
jumps beyond the spinodal of the initial phase. becomes divergent. These largest, or most unstable,
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modes dictate the potential direction for the spontaneousbut the general approach is equally applicable to conforma-
emergence of new structures. tionally asymmetric cases. R

A rigorous approach for studying anisotropic fluctuations ~ The meanfield order parametefy(k) for a given
based on the exact self-consistent solutions has beemmorphology can be written as:
developed by Shi and co-workérsHere, we provide a - .o
simpler, approximate approach based on an order-parameter Yo(k) = Z Agd(k—G) 3)
free energy functional. Although not accurate enough for G

guantitative purposes, the current approach is simpler towhereG is the set of reciprocal lattice wavevectors of the
Implement and IS mathema“ca"y more transparent than thEmorpho|ogy' and theAé’S are Obtained by m|n|m|z|ng
rigorous one. The order parameter approach is also morethe free energy equation (2) by substituting equation (3)

suitable for studying kinetics. Since the issues addressedintg the free energy.
in this paper do not depend on quantitative accuracy, we To study the fluctuation around the meanfield structure,
choose this simpler approach. we write
We start with the standard Leibler free energy functinal R = .
for incompressible diblock copolymers: Y(K) = ¥o(K) + Ay(K). 4)

= 1 - - = - > 1( .- - Substituting this into equation (2), keeping terms only up to
Fl¥ (K] = QJdkFZ(k' — KV (Ky(—k) + de(klkZ) quadratic order im\y(k) and noting the stationary condition

Lo O, I for Yq(K), we obtain
X Ta(ky, ko, — ki — k)Y (k)Y (ko) (— ki — k3)

- - 1 -
U mee e o FI¥(K)] = F¥o(k)] + Ejdk[% 1(k) — 2Nx]
+ EJ’d(klk2k3)F4(k1’ ko, k3, — kg — ko —Ks)

) v L E m v LA

S s o > s o X AY(KAY(— k) + = Jdk ~AY(KAY(— k-G

X YRR R — Ky o — o). M WU+ 5 2. kAR —k-)
In the above equatioW(R)sz(R) —f is the order para- ¥ R . I
meter wherep,(K) is the Fourier transform of the local + Z4 Z Z JdkAéAé,Al//(k)Axp(— k—G-G'). (5
density of A-monomers and is the global fraction of & &
the A-block. Tp(ky, ko), Ts(kikoks), and I'a(Ky, Kz, ks, ky) The presence of periodic order makes the fluctuations in

are in general wavevector-dependent coefficients in thej q0e"non_giagonal. To study the anisotropic fluctuation
expansion (called the two-point, three-point, and four-

) . . T : and the stability of the ordered phases, the quadratic term
oint vertex functions, respectively, in field-theoretical . : .
jF:ar on)._ The two-point vertgx func%/ion has the form of of fr_ee energy ne_eds_ to be diagonalized. Th'.s genera_llly
T (%( .R)—S‘gl(k) 2Ny, whereN is the degree of poly requires diagonalization of a very large matrix. In this
2\h, — - - ’ -

merization,y is the Flory—Huggins parameter, agg(k) is work, we make the simplifying approximation that the

: ; - dominant fluctuation arises from modes with wavevectors
the structure factor for a non-interacting diblock copolymer Ik

and is peaked at a wavenumbr In the weak-segregation K = k*. This approximation is justified in the weak segre-

regime, the density waves are dominated by Wavevectorsgatlon regime where fluctuations are mainly determined

with th,e optimal wavenumbek*. Thus we approximate by the Ie_a_dlng quadratic cogfﬂmeﬁg (k) — 2Nx -WhICh

B ) Ao ey o e e con bt o svles g

magnitudek*. In this approximation]’ (R ok ) becomes k+ G, and can ther) be dlago_nallzed anal_y_tlcally; the eigen-

independenf of the wavevectors 3wrl1i’IE2’(R3 Ky, Ko, Ka) values of this matrix determine the stability of an ordered
4\N1, "2, R3, "4

has onlv a weak anqular dependence. We further i norestructure. The structure is stable or metastable if all the
y 9 ep ' ner 19 eigenvalues are positive. The spinodal of a structure is
the_ angular dependence ifi, by the approximation

- ; X reached when the lowest eigenvalue turns negative.
Lalky, ko, ks, k4)8_ I'4(0, 0), where I',(0,0) is a function The structure factor of an ordered phase when it is stable
defined in Ref’. We denote these functions qg and~y,,

. L0 or metastable is given by
respectively. These approximations are not necessary

and are not expected to have any significant effects on - - - - - -
the issue we wish to address in this paper, but greatly WRIY( = KD = Yool — K) +{AU(KIAY(=K).  (6)
simplify the calculations and make the results much
more transparent. Thus we write the free energy functional
as:

The fluctuation part of the structure facta(K)Ay( — K))
is obtained by taking the diagonal element of the inverse
matrix of equation (5).

- - 4 - - We now illustrate the theory by applying it to the lamellar
FI¥(K] = 5 ) dk[S (k) — 2NxI¥(K¥(~ K) and hexagonal cylinder phases.

2.1 Anisotropic fluctuations in the lamellar phase

For the meanfield lamellar structure, we assume a

S .. sinusoidal wave in the-direction for the order parameter,
+ EJ'd(klk2k3)¢(k1)¢(k2)¢(k3)¢( —ki—k,—kg). (2 with k, = k*. The amplitude of the meanfield lamellar wave
: is obtained by minimizing the free energy equation (2).

So'(k) and vy, can be calculated easily using standard  To study the fluctuation spectrum and the stability of the
method&®. These functions depend on the fractibrof lamellar phase, we consider a small perturbation of the form
the A-block and on the conformation asymmetry between given by equation (4). The diagonalization of the matrix
the two blocks. For simplicity, we shall only consider con- in equation (5) can be easily performed with the result that
formationally symmetric diblocks in the rest of the paper, the lowest eigenvalues lie on two ringslat= =+ (1/2)k*

+ 22 a9y~ ks~ )
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can be understood with a simple geometric argument. In the
presence of a periodic structure, the fluctuations interact
with the meanfield order parameter associated with the
ordered structure, and become anisotropic as a result. Such
interactions satisfy a momentum conservation as manifested
in the forms of the last two terms in equation (5). In the
weak segregation regime, the meanfield order parameter is
dominated by Fourier modes with reciprocal lattice
wavevectorslGl = k*. The dominant fluctuations are also
from modes with wavevectorkl =~ k*. Thus we focus on
fluctuations with |kl=k*. Take the ysterm first. The
restriction that the wavevectors of the fluctuations be on a
(2) (b) sphere withk = k* meanslkl = k* and lk + Gl =k*. Since
Figure 2 (a) A schematic showing the two rings in thespace at |G|.: k*, it f.OIIOW.S that the doml.nam fluctuations, asargsult
k,= * 1k* corresponding to the least stable fluctuation modes in a Of interacting with the meanfield order parameter with a
lamellar structure of wavevectds, = k*. (b) The fluctuation part of the ~ wavevectorG, are on the ring formed by _the intersection
scattering pattern of the LAM phase witly = 18.0 forf = 0.35 inky, = 0 between the spherkkl =k* and the planek= + (1/2)G.
plane in units ok*. The two Bragg spots &, = * k*, k, = 0 due to the A similar analysis of they,term vyields two_ types of
meanfield lamellar wave are not shown . . . : : ; ; A/ ~
contributions: an isotropic contribution whe@' = —G
and an anisotropic contribution wh&h G’ = G” whereG'’
and G” are other reciprocal lattice wavevectors. For the
lamellar phase in the weak segregation limit, the second
contribution will be small since eithe® or G’ or G” will
have to be outside the spherical shétl=k*. For a
nonlamellar structure, e.g, for_hexagonal cylinders, it is
possible to_ satisfy G+G' =G” while still having
IGI=IG'I=1G"I=k* In that case the analysis becomes
identical to that for theys-term.

2.2 Anisotropic fluctuations in the hexagonal cylinder phase

The hexagonal cylinder (HEX) structure in the weak
segregation limit can be represented as a superposition of
six co-planar density waves with wavevectors that are 60
(a) (b) apart from each other. The positions of these wavevectors

Figure 3 (a) Locations of the largest fluctuation modes of the HEX phase In K'Spacg are Jndlcated by the six Iarge black dots at

in k-space. The 18 spots constitute the set of the smallest wavevectors of a + Gl_u * Gy, x Gs in Figure _3_ Th_e amplitude of the
twinning BCC structure. (b) Calculated structure factor for the HEX phase density wave is obtained by minimizing the free energy, and

in thek, = 0 plane. The parameters dre- 0.35 and\x = 13.0 the fluctuation spectrum can be obtained using the method
described earlier.

- o ) To locate the positions of the largest fluctuation modes
and [kl =k*, as shown inFigure 2a Thus the dominant i k-space, we use the simple geometric construction
fluctuations, i.e. the least stable fluctuation modes will come guytlined in Section 2.1. For each of the six reciprocal
from wavevectors on these rings. o lattice wavevectors we form a plane that is perpendicular

Figure 2 shows the fluctuation contribution to the to the wavevector and that cuts the wavevector by half. The
structure factor in thek, = O plane of the LAM phase intersection of this plane with the spherical shiéll=k*
with f = 0.35 in the metastable state near the spinodal. Theforms a ring. This construction results in six rings associated

scattering due to fluctuations at with the six reciprocal lattice wavevectors. Fluctuation
N V3 modes will be larger on these rings than elsewhere, and will
k=% sk* and k= * 5Kk be the largest at points where two rings intersect. There are
is a result of the intersection of the rings wih= 0 plane. 18 such points, six of which coincide with the positions
The same scattering pattern was obtained earlier by Yenugof the original HEX waves, and the other 12 are shown by
et al.” using a more rigorous approach. the dots at * Ky, = Ky, =Kz and *Qp, £Q; Q3
As Ny decreases, fluctuations on the two ring&igure 2 in Figure 3 These 18 spots constitute the reciprocal lattice

will increase. The vanishing of the eigenvalue corres- Of a twinning BCC structure. Therefore, the anisotropic

ponding to these least stable modes, or equivalently, thefluctuations in the HEX phase are on a twinning BCC
divergence of the fluctuations of these modes, signals structure. The twinning BCC structure was observed in the

the spinodal of the lamellar phase. experiment by Almdalet al'® by dynamically shearing
Although the scattering pattern resulting from the linear the BCC phase of a poly(ethylenepropylene)—poly(ethyl-
stability analysis lacks any in-layer structure (in thg ethylene) diblock copolymer. Their scattering pattern

plane), the finding that the dominant fluctuations occur at agrees well with ourFigure 3h They interpreted the
koo + Lt twinning BCC structure as arising from the shear deforma-
2= =3

tion of the initial structure. An alternative interpretation
leads to the important conclusion that any structures thatis that shear destroys the BCC structure and turns it into
form as a result of instability of the LAM phase will have the cylinder phase with large fluctuations. What they
a periodicity of two layers. observed could be the fluctuation from the HEX phase
The location of the largest fluctuation modeskispace rather than Bragg peaks from a twinning BCC structure.

4642 POLYMER Volume 39 Number 19 1998



Weakly segregated block copolymers: S. Qi and Z.-G. Wang

The analysis in this section identifies the least stable
fluctuation modes in an ordered block copolymer structure.
These modes provide hints of the potential evolution of the

system when the spinodal is reached. However, to address
the kinetics of phase transition, we need to study the nature

of anisotropic fluctuation under general non-equilibrium

conditions where there is a nonvanishing thermodynamic

driving force. This task is undertaken in the next section.

3. KINETICS OF ORDER-ORDER AND ORDER-
DISORDER TRANSITIONS

We describe the dynamic evolution of the order parameter

by a time-dependent Ginzburg—Landau equation:

oy(r,1) Jq L w2 | OF -

= |dr'M(r —7")Vs, | —= r,t 7
whereM(r — ') is a mobility coefficient which is in general
nonlocat'~*®andy(f, t) is a random fluctuating force with
zero mean and with a variance satisfying the fluctuation—
dissipation theorem:

M OnF' )= — kg TVEM(F —F')8(t —t').  (8)
It is convenient to work with the Fourier modes of the order

parameter. In the Fourier representation, equation (7)

becomes

ok _

ot

oF

=

K,
(-1 +n(k, t)

—K*M(K) [ 9)

while equation (8) becomes
(K, (K, 1)) = 2(27) ke TRM(K)5(K + K')8(t — t'). (10)

A general expression for the mobility coefficiedik) has
been derived by Kumaran and FredrickSdiit is:

M(k) =DS(K)

where Sy(k) is the structure factor for the same diblock
copolymer in the absence of enthalpic interaction (i.e.
with Nx = 0), andD is the diffusivity of the polymer chains

(11)

obtain, to linear order imxp('k') (to be consistent with the
level of treatment of equilibrium fluctuations in the previous
section):

ook _ [ oF ] 13)
at W(—K)|o
and
IAY(K) , 5°F " .
— Y = — )\ dk’ - S = A k, kvt
ot J LM(— Qouicy |, T

(14)

where the_subscript ‘0’ indicates that the derivatives are
taken aty(k) = ¢o(k). More explicitly, using equation (2)
for the free energy, equation (13) and equation (14) become,
respectively,

0A-
e _ _)\{[Sol(k*) — 2Nx]As + 7—23 > Ashs g
<
+2 > Aé/Aé"Aéé'é”} (19
G’ G
and
%t(k): _ x{[s;l(k) — 2Nx]AY(K)

+75 2. Aghy(k—0)
G

+5 > Y AéAé,A¢(R—é—é')}+n(E,t) (16)
G G

where we have used our ansatz equation (3) for the mean-
field order parameter.

The equation for the meanfield order parameter, equation
(15), describes a steepest descent path along the gradient of
the (meanfield) free energy. Thus, if the system finds itself
in a nonequilibrium condition, as after a temperature jump,

whose scaling behaviour depends on whether the chains arehe meanfield order parameter will follow a downhill path

entangled or not. R R
We define an effective kinetic coefficientk) = k*M(K).

until the gradient vanishes. It is clear from equation (15),
that if we start with a structure described by the mean-

In the weak segregation limit, the order parameter as well asfield order parametersA:}, the system will remain in that

fluctuations are dominated by wavevectors wikh=k*
Thus it is reasonable to replace tkalependeni\(k) by
AKk*). MKk) also becomes independent loin the limit of
large |kl. Therefore henceforth we will take(k) to be a
constant\, and equation (9) simplifies to

w&)__x[
oY(—K)

at
Equation (10) also simplifies correspondingly.

oF .
+n(k, t).

(12)

3.1 Deterministic versus fluctuation driving forces: linear
stability analysis
In equation (12), the order parametfik) includes both

structure; only the magnitude of the order parameter
changes. Thus the meanfield path corresponds to a trivial
dynamics. Deviation from such trivial, meanfield dynamics
is due to anisotropic fluctuations. As we showed in the last
section, fluctuations in ordered structures are anisotropic
and generally the largest fluctuations are located at differ-
ent positions in Fourier space than the reciprocal lattice
positions of the original structure. Thus the emergence
of new structures on the kinetic pathway is a result of
anisotropic fluctuations: these fluctuations determine
whether the meanfield deterministic path is stable.

The coefficient of the linear term on the right hand side of
equation (16) has the same form as that in equation (5).
However, in equation (5) the meanfield order parameters are

a part that represents the structure of the initial phase and ahose that minimize the free energy, and are hence time
part due to fluctuations. To gain insights and to make use of independent, whereas in equation (16) the order parameters

the concept of anisotropic fluctuations, it is instructive to
write the order parameter as a sum of a meanfieldya#k)
and a fluctuating parky/(k), in the same form as in equation
(4), but now allowing bothyy(k) and Ay(k) to be time-

in general do not correspond to an equilibrium condition and
are time dependent. This makes the analysis of equation (16)
difficult. However, our main concern here is to determine
the local, instantaneous stability of equation (15), for which

dependent. Substituting equation (4) into equation (12), we we only need to know if a certain fluctuation around an

POLYMER Volume 39 Number 19 1998 4643



Weakly segregated block copolymers: S. Qi and Z.-G. Wang

10.0
50t
deflecti i
efec gl PO saddle point
0.0 i
< 5.0
|
-10.0 : el :
-0.29 -0.25 -0.21 -0.17 -0.13
Ag

Figure 4 Growth rate of the least stable fluctuation mode@n units of
\) as a function of the LAM order parameterfat 0.35 and Kx)¢ = 15.0.
After a temperature jump; evolves in the direction of decreasivhgél.
The saddle point of the LAM at thilly value is atAz = —0.1911
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Figure 5 Temporal evolution of the global order paramefeduring the
LAM to HEX transition atf = 0.45 for the temperature jump frori); =
12.0 to (Nx); = 11.03

(d) t=8000

Figure 6 Microstructural evolution after a temperature jump from LAM

to HEX atf =0.45 (Nx)i = 12.0, (Nx); = 11.03); data taken at various
stages of the simulation

instantaneous value o&z, will grow or decay. For this

purpose, it suffices to analyze the growth rate matrix on the

and its analysis thus can be performed following the same
procedure as outlined in Section 2. In particular, the
locations of the least stable fluctuation modeskispace
remain the same; but the stability of these modes now
depends on the instantaneous value Af. When all
eigenvalues of the matrix are negative, the meanfield path
is stable, and when one or more eigenvalues turn positive,
the meanfield path becomes unstable, signalling the
emergence of new structure. The new structure should
now be represented by adding the most unstable modes to
the meanfield order parameter.

We now use these theoretical ideas to discuss the kinetics
of phase transitions after a sudden temperature jump, using
the LAM to HEX and HEX to DIS transitions as concrete
examples.

Consider the LAM to HEX transition first. We start from
a well-ordered LAM structure in equilibrium atNg); in
the LAM region of the phase diagram characterized by a
one-dimensional sinusoidal wave with waveved®mand
amplitudeAz. Now imagine making a temperature jump,
i.e., decreasinfiy to (N); in the HEX region of the phase
diagram, beyond the spinodal limit of the LAM phase. Due
to the deviation from equilibriuméy, will evolve according
to equation (15). However, even thoughix(; is now
beyond the spinodal of the LAM phase, the initial stage of
the evolution is a simple decay of the LAM order parameter,
i.e. the evolution is well described by equation (15) and the
fluctuations, the largest of which are located on the rings
in Figure 2 are still stable, due to the large valuefyf. This
is shown inFigure 4where we plot the growth exponent of
the least stable fluctuation mode as a function of the lamellar
order parameteA; (A is chosen to be negative to satisfy
the correct phase relationship). For large, negative values of
Az, the exponent is negative. decays (according to
equation (15)) the deterministic driving force decreases and,
at some point, the fluctuation becomes unstable, and new
structures corresponding to the two ringsHigure 2 begin
to emerge. Note that the onset of the instability, i.e.
deflection from the meanfield path, occurs before the system
reaches a saddle point.

The above-described scenario is in agreement with
the result obtained from direct numerical simulation of the
Ginzburg—Landau equationfigure 5 shows the simula-
tion result for the temporal behaviour of a global order
parameter defined as

Q=\/Z ¢(F)2=\/Z el -k
r k

for a temperature jump fromN); = 12.0 to Nx); = 11.03.

The initial rapid decrease in the order parameter as well as
the plateau that follows are well described by the meanfield
equation (equation (15)). Direct visual inspection of the
gray level plot of the microstructure during this stage does
not reveal any specific structure within the lamellar layers.
Thus the system remains in the lamellar phase, with a
decreased order parameter. At the end of the plateau, how-
ever, the global order parameter increases, and at the same
time in-layer density undulations begin to emerge as shown
in Figure 6h This signals the instability of the meanfield
path and the growth of the fluctuation mode. Note that the

*|n the numerical simulation, we used a constant local mobility coefficient
in equation (7); we also used a free energy which differs slightly from the

right-hand side of equation (16). This is the same matrix as Leipler free energy equation (2). There we focus on the qualitative rather

the quadratic coefficient in equation (5) multiplied by2A,
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In contrast, the behaviour @ in the case of the smaller

0.25 temperature jump (toNy); = 11.15) suggests a nontrivial
melting process. The slower decay at intermediate times is
020 accompanied by the formation of structures along the
Q o0.15 cylinders: the cylinders seem to first break into spheres and
0.10 the melting proceeds via this modulated hexagonal cylinder
’ (MHC) phase. This transient structure is clearest between
0.05 the two inflection points on the curve, because at long times
0.00 , the structure has all but melted and at short times the

0 1000 2000 3000 structure is dominated by the hexagonal cylindrical
t structure of the initial state-igure 8 shows the transient

) . MHC state.
Figure 7 Evolution of the global order parametérfor the temperature Th t litatively  diff t behavi b
jump from the HEX to DIS phase &t= 0.4 with (Nx); = 11.71 ese wo qualiatively areren ehaviours can be

understood by analyzing the stability of the meanfield
equation (equation (15)). For the large temperature jump,
fluctuations are stable along the entire path. On the other
hand, for the smaller temperature jump, fluctuations become
unstable on certain parts of the meanfield path. These two
different behaviours are shown by plotting the growth rate
of the least stable modes as a function of the order parameter
of the HEX wave; sedrigure 9 Since the least stable
fluctuations form a twinning BCC structure (or BCC
structure if we restrict to perfect periodic structures), the
growth of the fluctuation modes leads to the appearance of
a modulated hexagonal cylinder (MHC) structure which
is the superposition of the HEX and BCC waves. A critical
value of the finaNy can be located that separates these two
different kinetic behaviours. The result is

Figure 8 Intermediate state during the HEX to DIS transitiorf at 0.4 2 _1
((Nx); = 11.71, (Nx); = 11.15), taken at=1000 (Nx)e = (NX)* — 2y5/(5v4), where(Nx)* = 35 “(k*)

(forf =0.4, (Nx).=10.97)

2.0 Jeflection pointd For (\Nx)¢ > (Nx), a nontrivial pathway for the HEX to DIS
transition is expected, where the cylinders will first go
0.0 | through an MHC structure before melting; whereas if
(Nx)s < (Nx)., a direct featureless melting is expected.

20 These behaviours are capturedHigure 9 the curve for

the smaller temperature jump tdlX); = 11.15 has two
< 40 deflection points suggesting a ridgelike structure on the

free energy surface between these two points [Sgare

6.0 , \ 13) while the curve for the larger temperature jump to
-0.12 -0.08 -0.04 0.00 (Nx)s = 10.97 indicates that the fluctuations are stable, con-

Ag sistent with a simple melting of the HEX structure.

Figure 9 Growth rate of the least stable fluctuation mode§n units of . L . - .
) as a function of the HEX order parameterf at 0.4 for two final values 3.2 Be_yond the linear regime: a simplified multimode
of Nx. After a temperature jJumpy evolves in the direction of decreasing analysis

IA-|. For the smaller temperature jumpNg); = 11.15), the meanfield ; i e ; ;

kir?etic path becomes unstable at the first deflection point and, between the. The I.mear stability analysis in S.eCtlon 3'].' yields

two deflection points, the free energy surface has a ridgelike feature 'nformat'on about whether the _m_eanf'e'd path is stable,
when it becomes unstable, and if it does become unstable

in which direction the system will evolve. However, further

fluctuations have a periodicity in thedirection of twice evolution of these fluctuation into a three-dimensional
the lamellar spacing; this is in excellent agreement Structure cannot be predicted by such a linear stability

with the prediction that the most unstable modes are on analysis. ) . N ,
the rings at In this section, we describe a simplified multimode

ko + Lyr analysis, which, although lacking in mathematical rigor,
zT = has the merit of being physically intuitive, and captures
seeFigure 2 essentially all the qualitative dynamical behaviours revealed
We now discuss the HEX to DIS transition, this time by our computer simulation studies. This analysis was first
starting with the simulation resultsigure 7 shows the proposed by us in Refs, based on symmetry and physical
evolution of the global order parameter for two temperature intuition. Here we provide a more rigorous justification.
jumps. For the large temperature jump kxj: = 10.97, the We have shown in Section 2 and Section 3.1, that the
order parameter decays in a simple manner, suggestingargest fluctuation modes of an ordered phase are located at
direct melting of the cylinders. Gray level plots of the order positions ink-space usually different from those corres-
parameter at various times show no structure change as thgponding to the meanfield order parameter of the initial
cylinder melts. structure. When the meanfield kinetic path becomes unstable,

NI
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This is the same equation as equation (15), except that now
{Ag}includes both the order parameter of the original struc-
ture and the dominant fluctuation modes.

Note that, in this representation, the locations of the
fluctuation modes are consistent with the result of
anisotropic fluctuation. For example, fluctuations on the
lamellar phase _with a wavevectds, are captured by
the wavevectorss,, Gs, Gs, Gg, which reside on the ring
identified inFigure 2 The fact that here we have a discrete
mode of fluctuation, instead of the continuum of modes on
the ring from the previous analysis, is of little consequence
Figure 10 The 12 first-order wavevectors for a BCC structure at the linear order of the fluctuation. For example, the same
spinodal is predicted independent of the number of modes
used. (This is generally true in any linear stability analysis.)
Thus, the simplified mode analysis is consistent with the full

o2 | analysis in Section 2 and Section 3.1 at the level of linear
' stability analysis, but has the advantage of allowing a simple
-Ag, qualitative description of the system in the nonlinear
0.1 3 regime.

J_,{A@&A@S In Figure 11 we show the temporal evolution of the

0.0 e a.%As, various modes for the LAM to HEX transition after a sudden
Gy temperature jump, obtained by a direct numerical inte-

gration of equation (18). (For simplicity, we included the

0.1 0 20000 20000 50000 random noise term in the initial conditions for the various

" modes, but did not keep it during the simulation; this
turned out not to have qualitative effects on the dynamical
Figure 11 Evolution of the wave amplitudes during the LAM to HEX  behaviours.) The kinetic path starts with a rapid decrease of
transition aff =0.45 (Nx); = 12.0, (\x); = 11.03). Note the appearance of  the |amellar order parameter which then quickly turns to a
two plateaus beside the final HEX state plateau. During this initial phase, the amplitudes of the other
modes remain small. Thus the system remains in a lamellar
i i , state. At the end of the first plateau, the other modes (which
these fluctuation will grow and will become part of the new j, ihe case of LAM represent the anisotropic fluctuations)
order parameter. This suggests that one can construct alhegin to grow and at the same time the amplitude of the
expanded order parameter space that includes both th§ameliar wave undergoes another drop. The system then
original order parameter and the dominant fluctuation ya5ches another plateau. On this plateau, the amplitudes
modes. In the weak segregation limit, both the order a_ (=Ag)andA; (=Ag ) are degenerate; they bifurcate
parameter and the fluctuation are dominated by mOdesto?ﬁards the end of this S?ateau wh merges with the
with |kl =k*. Thus we choose a set of waveg, with lamellar waveA; while A; and A décrease to zero to
wavevectorsiG| =k*. If we restrict our consideration t0  tom the hexadonal cylinder stricture. This stagewise
spatially periodic structures, a minimal set of wavevectors pehaviour is consistent with the full simulation results

that can represent the LAM, HEX, BCC, as well as (rigyre 5. (The durations of the plateau are subject to the
intermediate states during the transitions are the 12 first- specific realization of the noise terms and hence are not
order reciprocal lattice wavevectors of a BCC lattice. These particularly meaningful.) Evolution of the microstructure

wavevectors are shown fhigure 1Q The order parameter s \yell captured by superposing the various modes. In

is then represented by particular, taking the order parameters in the transition
= . A region between the first and second plateaus, and in the
V) = %AG expiG) (7) middle of the second plateau, respectively, we reproduce
the two intermediate states, the modulated lamellar
where theAz values are the amplitudes associated with the and perforated lamellar structures, observedrigure 6b
wavevectorsG (we use the same notatio; for both andFigure 6¢
the order parameter of the initial structure and the dominant In Figure 12 we show a phase portrait in terms of
fluctuation modes). By considering only periodic structures, Az (=Aq :Aé) andAz_(=Az =Ag) for the HEX to
we may chooséy; to be real; themA - =Az. Inthis con-  DI5 transftion In the case of a Shallow temperature jump.
struction, the LAM phase is represented by a nonzero The transient growth ofz_is the result of the instability
Az (=A_g) with all other amplitudes being zero; the discussed in Section 3.1 While the linear analysis there
HEX_ phase is obtained by either the wavevectors predicted that the fluctuation modes (which are part of a
G;, Gy, G3, or Gy, Gs, Gg; the BCC phase requires all BCC or twinning BCC lattice) would grow at some point
six wavevectors with equal amplitudes. Evolution of the along the kinetic path, the nonlinear analysis presented

order parameter is then described by here allows us to predict the full trajectory of the system.

Figure 12 depicts the full pathway of the system starting

aaAté: — M S5k — 2Nx] A + % > Ashs g from a HEX structure, going through a transient BCC-
& modulated hexagonal state, and eventually melting to the

DIS state.
Ya Using the extended set of order parameters, one can
T 2 Z AsAsAs_a e (s 19 construct a simple free energy function. The free energy
G G

landscape in this order parameter space offers some
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0.010 - . transitions in weakly ordered diblock copolymers. Our
theory is based on the concept of anisotropic fluctuations

0.008 r 1 of the order parameter in the ordered structures. The
- 0.006 | emergence of new structures, whether they are thg fir!al
S equilibrium structures, or transient structures on the kinetic
< 0.004 | ] pathways, is due to the growth of the most unstable
fluctuation modes. A systematic linear stability analysis is

0.002 | 1 presented both for the equilibrium states—in order to locate
the spinodal of the initial structure and identify the least

0'00?0_06 0.0 -0.02 0.00 stable fluctuation modes—and for nonequilibrium states
A@ where the thermodynamic driving force is nonvanishing. In

1

the latter case, it is shown that the thermodynamic driving
Figure 12 Phase portrait for the HEX to DIS transition for a temperature force can be separated into a meanfield, deterministic
jump from (Nx); = 11.71 to Nx)s = 11.20 atf =0.4. The nonzero initial contribution that governs the evolution of the meanfield
Ag, is due to the initial perturbation order parameter associated with the initial structure, and a

fluctuating contribution that determines the stability of
the meanfield path and is responsible for the emergence
of new structures. The linear stability analysis allows us to
determine the stability of the meanfield path for any given
value of the meanfield order parameter of the kinetic
path. By combining the largest fluctuation modes and the
order parameter of the initial structure into an expanded
order parameter space, we are able to describe qualitatively
the full nonlinear evolution of the system during the various

transitions.
e T D In recent years, there have been a number of experi-
A@ ments aimed at probing various dynamical aspects of
1

the order—order and order—disorder transitions in block
Figure 13 The ridgelike structure of the free energy surface fy)¢ = copolymer$®=2’  However, experiments that directly
11.20 and = 0.4 address the kinetic pathways after temperature jumps are

few and are perhaps difficult. Nevertheless, some tentative

comparisons can be made between theory and experiments
additional insight into the nature of the kinetic pathways. where such comparisons are appropriate.
For example, the two plateaus gure 11 for the LAM We start with the shear cessation experiments of Bates
to HEX transition are seen to correspond to two saddle and co-worker®. In one of these experiments, an initially
points in the free energy surface. The first plateau is neardisordered phase of asymmetric poly(ethylenepropylene)—
the point where the fluctuations around the lamellar poly(ethylethylene) (PEP—PEE) diblock copolymer close
structure become unstable. These fluctuations (captured into the order—disorder boundary is subjected to a constant
the current analysis by\éz and Aés) lead to correlated  shear which induces a transition to the HEX phase (with the
lateral modulations in the lamellar structure which grow cylinders aligned along the shear direction). The shear is
into a perforated lamellar (PL) structure. The second plateausuddenly stopped, and the system is now in a condition
corresponds to such a PL structure which is itself another favouring the DIS phase. These authors observed that the
saddle point; the most unstable direction being the cylinders first break into spheres before melting to the DIS
bifurcation betweem\; and Az which leads to the final ~ phase, much akin to what we find after a temperature jump.
HEX structure. The nature of the PL structure has been Insofar as a HEX phase is created and then the condition is
discussed in our recent publicatidn changed to favouring the DIS phase, the shear-cessation

In the case of the HEX to DIS transition, a study of the experiment can be likened to a temperature jump experi-
free energy shows that the landscape (in the parameter spacment. We believe the mechanism described in this paper is
of Az andAg ) has two qualitatively different appearances responsible for their observations.
depending on the extent of the temperature jump. Re)( The HEX to BCC transition has also been studied by
= 10.97 corresponding to the larger temperature jump, the Bates and co-worket& These authors showed that BCC
free energy surface is parabolic with a simple minimum spheres pinch off from the HEX cylinders such that the
at Ay =0 andA; =0. However, for Nx); = 11.20, the cylinder’s axis is the (111) direction of the resulting BCC
free energy surface has a ridgelike feature as shown instructure which they term the ‘epitaxial’ relationship. They
Figure 13 The transient appearance of the BCC-modulation also suggested that the BCC phase forms by way of an
during the melting of the hexagonal cylinders is thus a result undulating cylinder structure. These are in agreement with
of deflection from the direct downhill patid; = 0. our mechanisth®,
Though we have discussed only the LAM to HEX and Thermally induced LAM to HEX transition has been

HEX to DIS transitions explicitly, the analyses (in both studied by Hajduket al® for the poly(styreneb-ethene-
Section 3.1 and Section 3.2) can be applied to studying otherco-butene) diblock copolymer. However, these authors did

transitions as well. not observe the appearance of the intermediate modulated/
perforated lamellar structure predicted by our theory and
4. DISCUSSION simulation (seeFigure 6). We have shown earligithat a

distinct intermediate PL structure appears only in a certain
In this paper, we have described a unified approach totemperature window in the LAM to HEX transition; see
understanding the various order—order and order—disorderFig. 15 of Ref.>. It is possible that the temperature jump in
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the experiment is too large for a distinct intermediate PL to TC-96-063) and the Alfred P. Sloan Foundation (Award
appear, but further studies are needed to fully resolve theNo. BR-3508).

discrepancy between theory and experiment.
On the other hand, the perforated lamellar (PL) structures

have been observed in several experiments by BateS'REFERENCES

groug®=Cin regions of the phase diagram between the

LAM and HEX or the G phase. In a very recent paper by 1.

Hajduk et al®!, an extensive series of new experiments

demonstrate quite convincingly that the PL is a kinetic state ,

en route from the LAM phase to the HEX or the G phase,
thus providing indirect evidence of our proposed LAM to

HEX transition mechanism. Although further studies are 3.

required, we found, both through direct computer simula-

. ; ; 4.
tion, and through theoretical analysis, that the PL state 5
6

during the transition from LAM to HEX after a temperature
jump can be made metastable by a sudden temperature

quench back to the initial temperature: instead of going back 7

to the LAM phase, the system gets trapped in a metastable

PL state. It is possible that the PL structures reported by g,
Bates and co-workers, that had been initially thought to be 9.
equilibrium phases, were in fact kinetically trapped states 10
due to a combination of thermal and shear operations used11

in the experiments. 12

As concluding remarks, we mention two outstanding 13.
issues related to fluctuations in ordered block copolymer 14.
phases and kinetics of order—order and order—disorderl®-

transitions. The first issue concerns the renormalization 16

effects due to nonlinear fluctuations on the stability of the 17.
The Brazovskii—Fredrickson—Helfand 18.

ordered phases.
theory’>33 assumes isotropic fluctuations and treats these
fluctuations by a simple Hartree approximation. Although
capable of capturing several new qualitative features,
including the prediction that the DIS to LAM transition
becomes first order, the theory cannot be an accurate

description of the ordered phases. It is thus of interest to 20-

study the effects of nonlinear anisotropic fluctuations. The ,,
anisotropic fluctuation effects will be most pronounced for

asymmetric compositions due to the renormalization from 22.

theys-term, which is absent in the isotropic Hartree theory.
In addition to shifts in the phase boundaries, an interesting
issue is whether the spinodals of the ordered phases
predicted from the linear theories (the theory in this work

and that in Ref€'") can survive the renormalization. 23.

Another issue concerns the effects of shear flow.
Experimentally it is much more convenient to cross phase ,,
boundaries by applying a flow field than by changing the
temperature. Changes in the small-angle neutron scattering

patterns of ordered block copolymer phases due to shear?>

have been demonstrated in several experiments by the

Bates’ group®—3C These results reflect the distortion of

the spectrum of anisotropic fluctuations. However, no 26.

theory is currently available. We plan to address the effects

of shear flow on anisotropic fluctuations and the various 27-
spinodals, first by a linear theory and then by a renormal- ¢

ized theory that accounts for the nonlinear, anisotropic

fluctuations. 29.
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