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We discuss the kinetics of order–order and order–disorder transitions in weakly segregated diblock copolymers.
A theory is developed based on the anisotropic fluctuations in the ordered phases. These fluctuations play two
crucial roles: first, they determine the stability limit of the initial structure and, second, they are responsible for the
emergence of new structures, whether these are the final equilibrium states or transient states during the transition.
A linear stability analysis allows us to identify the largest fluctuation modes under both equilibrium and
nonequilibrium conditions. By combining the order parameter of the initial structure with the largest fluctuation
modes into a simplified multimode model we are able to describe qualitatively the full nonlinear evolution of the
system after sudden temperature jumps beyond the spinodal of the initial phase. Our theory successfully explains
our earlier results from direct Cahn–Hilliard-type numerical simulations. Our predicted kinetic scenarios are in
accord with available experiments.q 1998 Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

Dynamics of phase transitions is one of the outstanding
problems in statistical physics. The most well-known and
widely studied example is that of demixing (spinodal
decomposition) in a binary solution or alloy upon a sudden
temperature change below the spinodal line in the phase
diagram. There the issues of interest are the domain growth
dynamics, characterized by both the morphology of the
domains and their sizes. It is well known, for example, that
the domain growth dynamics in the late-stage spinodal
decomposition follows a dynamic scaling, characterized
by a growth exponent1.

The dynamics of phase transitions in self-assembling
complex fluids is considerably richer than spinodal decom-
position in simple binary liquids or alloys and is yet
relatively unexplored. Block copolymers, because of the
softness of interactions and long relaxation times associated
with the relevant structural changes, offer some unique
opportunities for experimentally studying the pathways of
phase transitions in these systems.

One of the most fascinating properties of block
copolymers is their ability to self-assemble into a variety
of ordered microstructures. The simplest block copolymer
system is an undiluted diblock copolymer with two
incompatible blocks where, upon decreasing the tempera-
ture and/or increasing the molecular weight, a variety of
ordered microstructures, such as body-centre-cubic (BCC)
spheres, hexagonally ordered cylinders (HEX), lamellae
(LAM), and a bicontinuous gyroid (G) structure have been
obtained. The equilibrium morphological behaviours of
such simple diblock copolymers are now well understood2,3.

In this paper, we address questions concerning the
kinetics of various order–order and order–disorder transi-
tions in weakly segregated diblock copolymers. Specifi-
cally, how does the system transform from one
microstructure to another after a sudden temperature
change? (This question is a valid one because in the weak
segregation limit, phase transitions can be effected by
changing the temperature (seeFigure 1).) Are there
interesting intermediate states during the transition? If so,
what is the nature of these intermediate states? Apart
from the fundamental interests, a thorough study and
understanding of the kinetic pathways in phase transitions
of ordered block copolymer phases may help in designing
suitable processing routes for obtaining ordered structures
for nanotechnology applications.

Recently, we have studied the kinetics of several order–
order and order–disorder transitions after sudden tempera-
ture jumps in weakly segregated diblock copolymers
using a time-dependent Ginzburg–Landau (TDGL)
approach (also called the Cahn–Hilliard approach by
other authors)4,5. Direct numerical simulation of the
TDGL equations shows that, depending on the extent of
the temperature jumps, these transitions often occur in
several stages and can involve nontrivial intermediate
states. For example, we find that melting of the hexagonal
cylinder phase can involve the transient appearance of
density modulations along the cylinders for small tempera-
ture jumps (which are nevertheless beyond the spinodal of
the initial cylinder phase). Transition from the lamellar
phase to the hexagonal cylinder phase goes through a
perforated lamellar state within a certain temperature
range. Our numerical findings are elucidated by a multimode
analysis under the single wave number approximation. The
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analysis reveals that the geometric characteristics of the free
energy surface, particularly saddle points and ridgelike
features, are responsible for the nontrivial intermediate
states on the kinetic pathways. On the basis of this analysis,
a generalized kinetic ‘phase diagram’ is constructed, which
is able to account for the different scenarios observed in the
numerical simulation.

Our analysis in Refs4,5, while essentially correct, is based
on simple symmetry arguments and physical intuition.
Recently, Laradjiet al.6, using an RPA theory of anisotropic
fluctuations developed by this group of researchers7, have
addressed the stability of ordered phases. By expanding
the free energy around the exact meanfield solutions to
second order, these authors examined the anisotropic
fluctuation in the various ordered phases. The most unstable
fluctuation modes are used to infer the kinetic pathways
of the order–order transitions. While it is true that the most
unstable modes in an ordered phase are closely related
to the transition kinetics, this information is inadequate to
determine the actual pathways of the transitions for two
reasons: first, the stability analysis by Laradjiet al. is a
linear one and can only predict the fastest growing modes
when an ordered structure reaches its spinodal, but cannot
predict the subsequent evolution of the system. Secondly,
and more importantly, their stability analysis is on a
stationary structure where the first derivatives of the free
energy vanish, but usually the various order–order and
order–disorder transitions are caused by large deviations
from equilibrium conditions which result in a large
deterministic driving force given by nonvanishing first
derivatives of the free energy. This is important, for
example, for explaining why hexagonal cylinders melt
uniformly for large temperature jumps but proceed through
a BCC-modulated hexagonal cylinder state when the
temperature jump is small4,5.

In this paper, we summarize our most recent efforts in
understanding the kinetics of order–order and order–
disorder transitions. A unified framework is developed
based on anisotropic fluctuations in the ordered phases.
These fluctuations are shown to play two crucial roles:
first, they determine the stability limit of the initial structure
and, second, they are responsible for the emergence of
new structures, whether these are the final equilibrium states
or transient states during the transition. A linear stability
analysis allows us to identify the largest fluctuation modes
under both equilibrium and nonequilibrium conditions. By
combining the order parameter of the initial structure
with the largest fluctuation modes into a simplified multi-
mode model, we are able to describe qualitatively the full
nonlinear evolution of the system after sudden temperature
jumps beyond the spinodal of the initial phase.

This paper is organized as follows. In the next section,
we discuss anisotropic fluctuations in a stationary ordered
phase. This study allows us to obtain the fluctuation
spectrum from which we can identify the least stable
modes. The vanishing of the eigenvalue associated with
the least stable modes signals the limit of stability of the
structure. A key result in this section is that the least
stable modes are generally located on reciprocal lattice
positions that are different from those constituting the
initial ordered structure. This is the very reason for the
emergence of new structures. In Section 3, we discuss
the kinetics of order–order and order–disorder transitions
under nonequilibrium conditions. First, we perform a linear
stability analysis on the dynamic equation. A key step here
is the separation of the free energy driving force into a
meanfield, deterministic part and a fluctuating part. The
deterministic contribution serves primarily to change the
amplitudes of the density waves of the initial ordered phase.
The fluctuating part determines the stability of the meanfield
trajectory, the deviation from which leads to the emerg-
ence of new structures. The most unstable modes give
the directions of deviation from the meanfield path.
Evolution beyond the linear regime is then studied by
focusing on these most unstable modes together with the
meanfield order parameter associated with the initial
structure. This procedure provides the justification for the
multimode analysis used in our earlier work. Combining
the linear stability analysis with the simplified multi-
mode analysis, we arrive at a fairly complete picture of
the various kinetic scenarios. Two transitions, the lamellar
(LAM) to hexagonal cylinder (HEX) transition, and
the hexagonal (HEX) to disorder (DIS) transition, are
used as concrete examples to illustrate the theoretical
concepts. Section 4 is a summary of our main results,
together with discussions of relevant experiments, and some
future issues.

2. ANISOTROPIC FLUCTUATIONS AND STABILITY
OF ORDERED PHASES

In this section, we discuss anisotropic fluctuations in a
stationary ordered structure. The purpose of this section is
two-fold: first, the analysis allows us to identify the high
temperature spinodal and the largest fluctuation modes in
an ordered structure; and second, and more relevant to the
transition kinetics, the method of analysis can be easily
extended to nonequilibrium conditions.

At a stationary state (stable, metastable, or state corres-
ponding to a saddle point on the free energy surface), the
first derivatives of the free energy with respect to the order
parameters (to be specified later) vanish. The stability of
the structure is determined by the matrix of the second
derivatives. A stable structure, either locally or globally, is
characterized by the positive definiteness of the matrix of
the second derivatives. The system reaches its spinodal
when the lowest eigenvalue of the matrix of the second
derivatives vanishes.

The stability of a structure is intimately related to
the spontaneous, thermal fluctuations in that structure. A
structure is stable if the mean-square fluctuations of the
order parameter are finite, and becomes unstable when any
mean-square fluctuations diverge. In an ordered diblock
copolymer phase, the fluctuations are generally anisotropic
because of the anisotropy of the ordered structure. The
structure reaches its spinodal when the largest fluctuation
becomes divergent. These largest, or most unstable,
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Figure 1 The meanfield phase diagram for a conformationally symmetric
diblock copolymer system, calculated using the free energy equation (2)



modes dictate the potential direction for the spontaneous
emergence of new structures.

A rigorous approach for studying anisotropic fluctuations
based on the exact self-consistent solutions has been
developed by Shi and co-workers7. Here, we provide a
simpler, approximate approach based on an order-parameter
free energy functional. Although not accurate enough for
quantitative purposes, the current approach is simpler to
implement and is mathematically more transparent than the
rigorous one. The order parameter approach is also more
suitable for studying kinetics. Since the issues addressed
in this paper do not depend on quantitative accuracy, we
choose this simpler approach.

We start with the standard Leibler free energy functional8

for incompressible diblock copolymers:

F[w(~k)] ¼
1
2

∫
d~kG2(~k, ¹ ~k)w(~k)w( ¹ ~k) þ

1
3!

∫
d(~k1

~k2)

3 G3(~k1, ~k2; ¹ ~k1 ¹ ~k2)w(~k1)w(~k2)w( ¹ ~k1 ¹ ~k2)

þ
1
4!

∫
d(~k1

~k2
~k3)G4(~k1, ~k2, ~k3, ¹ ~k1 ¹ ~k2 ¹ ~k3)

3 w(~k1)w(~k2)w(~k3)w( ¹ ~k1 ¹ ~k2 ¹ ~k3): ð1Þ

In the above equation,w(~k) ¼ rA(~k) ¹ f is the order para-
meter whererA(~k) is the Fourier transform of the local
density of A-monomers andf is the global fraction of
the A-block. G2(~k1, ~k2), G3(~k1

~k2
~k3), and G4(~k1, ~k2, ~k3, ~k4)

are in general wavevector-dependent coefficients in the
expansion (called the two-point, three-point, and four-
point vertex functions, respectively, in field-theoretical
jargon). The two-point vertex function has the form of
G2(~k, ¹ ~k) ¼ S¹ 1

0 (k) ¹ 2Nx, whereN is the degree of poly-
merization,x is the Flory–Huggins parameter, andS0(k) is
the structure factor for a non-interacting diblock copolymer
and is peaked at a wavenumberk*. In the weak-segregation
regime, the density waves are dominated by wavevectors
with the optimal wavenumberk*. Thus we approximate
the functionsG3(~k1, ~k2, ~k3) and G4(~k1, ~k2, ~k3, ~k4) by their
values corresponding to wavevectors having the optimal
magnitudek*. In this approximation,G3(~k1, ~k2, ~k3) becomes
independent of the wavevectors whileG4(~k1, ~k2, ~k3, ~k4)
has only a weak angular dependence. We further ignore
the angular dependence inG4 by the approximation
G4(~k1, ~k2, ~k3, ~k4) ¼ G4(0, 0), where G4(0,0) is a function
defined in Ref.8. We denote these functions asg3 andg4,
respectively. These approximations are not necessary
and are not expected to have any significant effects on
the issue we wish to address in this paper, but greatly
simplify the calculations and make the results much
more transparent. Thus we write the free energy functional
as:

F[w(~k)] ¼
1
2

∫
d~k[S¹ 1

0 (k) ¹ 2Nx]w(~k)w( ¹ ~k)

þ
g3

3!

∫
d(~k1

~k2)w(~k1)w(~k2)w( ¹ ~k1 ¹ ~k2)

þ
g4

4!

∫
d(~k1

~k2
~k3)w(~k1)w(~k2)w(~k3)w( ¹ ~k1 ¹ ~k2 ¹ ~k3): ð2Þ

S0
¹1(k) and g4 can be calculated easily using standard

methods8,9. These functions depend on the fractionf of
the A-block and on the conformation asymmetry between
the two blocks. For simplicity, we shall only consider con-
formationally symmetric diblocks in the rest of the paper,

but the general approach is equally applicable to conforma-
tionally asymmetric cases.

The meanfield order parameterw0(~k) for a given
morphology can be written as:

w0(~k) ¼
∑
~G

A~Gd(~k¹ ~G) (3)

where ~G is the set of reciprocal lattice wavevectors of the
morphology, and theA~G’s are obtained by minimizing
the free energy equation (2) by substituting equation (3)
into the free energy.

To study the fluctuation around the meanfield structure,
we write

w(~k) ¼ w0(~k) þ Dw(~k): (4)

Substituting this into equation (2), keeping terms only up to
quadratic order inDw(~k) and noting the stationary condition
for w0(~k), we obtain

F[w(~k)] ¼ F[w0(~k)] þ
1
2

∫
d~k[S¹ 1

0 (k) ¹ 2Nx]

3 Dw(~k)Dw( ¹ ~k) þ
g3

2

∑
~G

∫
d~kA~GDw(~k)Dw( ¹ ~k¹ ~G)

þ
g4

4

∑
~G

∑
~G9

∫
d~kA~GA~G9

Dw(~k)Dw( ¹ ~k¹ ~G¹ ~G9): ð5Þ

The presence of periodic order makes the fluctuations in
~k-space non-diagonal. To study the anisotropic fluctuation
and the stability of the ordered phases, the quadratic term
of free energy needs to be diagonalized. This generally
requires diagonalization of a very large matrix. In this
work, we make the simplifying approximation that the
dominant fluctuation arises from modes with wavevectors
l~kl < k*. This approximation is justified in the weak segre-
gation regime where fluctuations are mainly determined
by the leading quadratic coefficientS0

¹1(k) ¹ 2Nx which
has a minimum atk ¼ k*. Using this approximation, the
matrix can be truncated to a smaller matrix involving~k and
~k 6 ~G, and can then be diagonalized analytically; the eigen-
values of this matrix determine the stability of an ordered
structure. The structure is stable or metastable if all the
eigenvalues are positive. The spinodal of a structure is
reached when the lowest eigenvalue turns negative.

The structure factor of an ordered phase when it is stable
or metastable is given by

〈w(~k)w( ¹ ~k)〉 ¼ w0(~k)w0( ¹ ~k) þ 〈Dw(~k)Dw( ¹ ~k)〉: (6)

The fluctuation part of the structure factor〈Dw(~k)Dw( ¹ ~k)〉
is obtained by taking the diagonal element of the inverse
matrix of equation (5).

We now illustrate the theory by applying it to the lamellar
and hexagonal cylinder phases.

2.1 Anisotropic fluctuations in the lamellar phase
For the meanfield lamellar structure, we assume a

sinusoidal wave in thez-direction for the order parameter,
with kz ¼ k*. The amplitude of the meanfield lamellar wave
is obtained by minimizing the free energy equation (2).

To study the fluctuation spectrum and the stability of the
lamellar phase, we consider a small perturbation of the form
given by equation (4). The diagonalization of the matrix
in equation (5) can be easily performed with the result that
the lowest eigenvalues lie on two rings atkz ¼ 6 (1/2)k*
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and l~kl¼ k*, as shown inFigure 2a. Thus the dominant
fluctuations, i.e. the least stable fluctuation modes will come
from wavevectors on these rings.

Figure 2 shows the fluctuation contribution to the
structure factor in thekx ¼ 0 plane of the LAM phase
with f ¼ 0.35 in the metastable state near the spinodal. The
scattering due to fluctuations at

kz ¼ 6 1
2k* and ky ¼ 6

��
3

p
2 k*

is a result of the intersection of the rings withkx ¼ 0 plane.
The same scattering pattern was obtained earlier by Yenug
et al.7 using a more rigorous approach.

As Nx decreases, fluctuations on the two rings inFigure 2
will increase. The vanishing of the eigenvalue corres-
ponding to these least stable modes, or equivalently, the
divergence of the fluctuations of these modes, signals
the spinodal of the lamellar phase.

Although the scattering pattern resulting from the linear
stability analysis lacks any in-layer structure (in thex,y
plane), the finding that the dominant fluctuations occur at

kz ¼ 6 1
2 k*

leads to the important conclusion that any structures that
form as a result of instability of the LAM phase will have
a periodicity of two layers.

The location of the largest fluctuation modes ink-space

can be understood with a simple geometric argument. In the
presence of a periodic structure, the fluctuations interact
with the meanfield order parameter associated with the
ordered structure, and become anisotropic as a result. Such
interactions satisfy a momentum conservation as manifested
in the forms of the last two terms in equation (5). In the
weak segregation regime, the meanfield order parameter is
dominated by Fourier modes with reciprocal lattice
wavevectorsl~Gl¼ k*. The dominant fluctuations are also
from modes with wavevectorsl~kl < k*. Thus we focus on
fluctuations with l~kl¼ k*. Take the g3-term first. The
restriction that the wavevectors of the fluctuations be on a
sphere withk ¼ k* meansl~kl¼ k* and l~k 6 ~Gl¼ k*. Since
l~Gl¼ k*, it follows that the dominant fluctuations, as a result
of interacting with the meanfield order parameter with a
wavevector~G, are on the ring formed by the intersection
between the spherel~kl¼ k* and the plane~k¼ 6 (1=2) ~G.
A similar analysis of theg4-term yields two types of
contributions: an isotropic contribution when~G9 ¼ ¹ ~G
and an anisotropic contribution when~Gþ ~G9 ¼ ~G0 where~G9
and ~G0 are other reciprocal lattice wavevectors. For the
lamellar phase in the weak segregation limit, the second
contribution will be small since either~G or ~G9 or ~G0 will
have to be outside the spherical shelll~kl¼ k*. For a
nonlamellar structure, e.g. for hexagonal cylinders, it is
possible to satisfy ~Gþ ~G9 ¼ ~G0 while still having
l~Gl¼ l~G9l¼ l~G0l¼ k* In that case the analysis becomes
identical to that for theg3-term.

2.2 Anisotropic fluctuations in the hexagonal cylinder phase
The hexagonal cylinder (HEX) structure in the weak

segregation limit can be represented as a superposition of
six co-planar density waves with wavevectors that are 608
apart from each other. The positions of these wavevectors
in k-space are indicated by the six large black dots at
6 ~G1, 6 ~G2, 6 ~G3 in Figure 3. The amplitude of the
density wave is obtained by minimizing the free energy, and
the fluctuation spectrum can be obtained using the method
described earlier.

To locate the positions of the largest fluctuation modes
in k-space, we use the simple geometric construction
outlined in Section 2.1. For each of the six reciprocal
lattice wavevectors we form a plane that is perpendicular
to the wavevector and that cuts the wavevector by half. The
intersection of this plane with the spherical shelll~kl¼ k*
forms a ring. This construction results in six rings associated
with the six reciprocal lattice wavevectors. Fluctuation
modes will be larger on these rings than elsewhere, and will
be the largest at points where two rings intersect. There are
18 such points, six of which coincide with the positions
of the original HEX waves, and the other 12 are shown by
the dots at 6 ~K1, 6 ~K2, 6 ~K3 and 6 ~Q1, 6 ~Q2, 6 ~Q3
in Figure 3. These 18 spots constitute the reciprocal lattice
of a twinning BCC structure. Therefore, the anisotropic
fluctuations in the HEX phase are on a twinning BCC
structure. The twinning BCC structure was observed in the
experiment by Almdalet al.10 by dynamically shearing
the BCC phase of a poly(ethylenepropylene)–poly(ethyl-
ethylene) diblock copolymer. Their scattering pattern
agrees well with ourFigure 3b. They interpreted the
twinning BCC structure as arising from the shear deforma-
tion of the initial structure. An alternative interpretation
is that shear destroys the BCC structure and turns it into
the cylinder phase with large fluctuations. What they
observed could be the fluctuation from the HEX phase
rather than Bragg peaks from a twinning BCC structure.
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Figure 2 (a) A schematic showing the two rings in thek-space at
kz ¼ 6 1

2 k* corresponding to the least stable fluctuation modes in a
lamellar structure of wavevectorkz ¼ k*. (b) The fluctuation part of the
scattering pattern of the LAM phase withNx ¼ 18.0 forf ¼ 0.35 inkx ¼ 0
plane in units ofk*. The two Bragg spots atkz ¼ 6 k*, ky ¼ 0 due to the
meanfield lamellar wave are not shown

Figure 3 (a) Locations of the largest fluctuation modes of the HEX phase
in k-space. The 18 spots constitute the set of the smallest wavevectors of a
twinning BCC structure. (b) Calculated structure factor for the HEX phase
in the kz ¼ 0 plane. The parameters aref ¼ 0.35 andNx ¼ 13.0



The analysis in this section identifies the least stable
fluctuation modes in an ordered block copolymer structure.
These modes provide hints of the potential evolution of the
system when the spinodal is reached. However, to address
the kinetics of phase transition, we need to study the nature
of anisotropic fluctuation under general non-equilibrium
conditions where there is a nonvanishing thermodynamic
driving force. This task is undertaken in the next section.

3. KINETICS OF ORDER–ORDER AND ORDER–
DISORDER TRANSITIONS

We describe the dynamic evolution of the order parameter
by a time-dependent Ginzburg–Landau equation:

]w(~r, t)
]t

¼

∫
d~r9M(~r ¹ ~r9)=2

~r9
dF

dw(~r9)

� �
þ h(~r, t) (7)

whereM(~r ¹ ~r9) is a mobility coefficient which is in general
nonlocal11–16andh(~r, t) is a random fluctuating force with
zero mean and with a variance satisfying the fluctuation–
dissipation theorem:

〈h(~r, t)h(~r9, t9)〉 ¼ ¹ 2kBT=2
~r M(~r ¹ ~r9)d(t ¹ t9): (8)

It is convenient to work with the Fourier modes of the order
parameter. In the Fourier representation, equation (7)
becomes

]w(~k)
]t

¼ ¹ k2M(~k)
dF

dw( ¹ ~k)

" #
þ h(~k, t) (9)

while equation (8) becomes

〈h(~k, t)h(~k9, t9)〉 ¼ 2(2p)3kBTk2M(~k)d(~kþ ~k9)d(t ¹ t9): (10)

A general expression for the mobility coefficientM(k) has
been derived by Kumaran and Fredrickson16; it is:

M(k) ¼ DS0(k) (11)

where S0(k) is the structure factor for the same diblock
copolymer in the absence of enthalpic interaction (i.e.
with Nx ¼ 0), andD is the diffusivity of the polymer chains
whose scaling behaviour depends on whether the chains are
entangled or not.

We define an effective kinetic coefficientl(~k) ¼ k2M(~k).
In the weak segregation limit, the order parameter as well as
fluctuations are dominated by wavevectors withl~kl¼ k*
Thus it is reasonable to replace thek-dependentl(~k) by
l(k*). l(~k) also becomes independent of~k in the limit of
large l~kl. Therefore henceforth we will takel(~k) to be a
constantl, and equation (9) simplifies to

]w(~k)
]t

¼ ¹ l
dF

dw( ¹ ~k)

" #
þ h(~k, t): (12)

Equation (10) also simplifies correspondingly.

3.1 Deterministic versus fluctuation driving forces: linear
stability analysis

In equation (12), the order parameterw(~k) includes both
a part that represents the structure of the initial phase and a
part due to fluctuations. To gain insights and to make use of
the concept of anisotropic fluctuations, it is instructive to
write the order parameter as a sum of a meanfield partw0(~k)
and a fluctuating partDw(~k), in the same form as in equation
(4), but now allowing bothw0(~k) and Dw(~k) to be time-
dependent. Substituting equation (4) into equation (12), we

obtain, to linear order inDw(~k) (to be consistent with the
level of treatment of equilibrium fluctuations in the previous
section):

]w0(~k)
]t

¼ ¹ l
dF

dw( ¹ ~k)

" #
0

(13)

and

]Dw(~k)
]t

¼ ¹l

∫
d~k9

d2F

dw( ¹ ~k)dw(~k9)

" #
0

Dw(~k9) þ h(~k, t)

(14)

where the subscript ‘0’ indicates that the derivatives are
taken atw(~k) ¼ w0(~k). More explicitly, using equation (2)
for the free energy, equation (13) and equation (14) become,
respectively,

]A~G

]t
¼ ¹ l

(
[S¹ 1

0 (k* ) ¹ 2Nx]A~G þ
g3

2

∑
~G9

A~G9
A~G¹ ~G9

þ
g4

6

∑
~G9

∑
~G0

A~G9
A~G0

A~G¹ ~G9 ¹ ~G0

)
ð15Þ

and

]Dw(~k)
]t

¼ ¹ l

(
[S¹ 1

0 (k) ¹ 2Nx]Dw(~k)

þ g3

∑
~G

A~GDw(~k¹ ~G)

þ
g4

2

∑
~G

∑
~G9

A~GA~G9
Dw(~k¹ ~G¹ ~G9)

)
þ h(~k, t) ð16Þ

where we have used our ansatz equation (3) for the mean-
field order parameter.

The equation for the meanfield order parameter, equation
(15), describes a steepest descent path along the gradient of
the (meanfield) free energy. Thus, if the system finds itself
in a nonequilibrium condition, as after a temperature jump,
the meanfield order parameter will follow a downhill path
until the gradient vanishes. It is clear from equation (15),
that if we start with a structure described by the mean-
field order parameters {A~G}, the system will remain in that
structure; only the magnitude of the order parameter
changes. Thus the meanfield path corresponds to a trivial
dynamics. Deviation from such trivial, meanfield dynamics
is due to anisotropic fluctuations. As we showed in the last
section, fluctuations in ordered structures are anisotropic
and generally the largest fluctuations are located at differ-
ent positions in Fourier space than the reciprocal lattice
positions of the original structure. Thus the emergence
of new structures on the kinetic pathway is a result of
anisotropic fluctuations: these fluctuations determine
whether the meanfield deterministic path is stable.

The coefficient of the linear term on the right hand side of
equation (16) has the same form as that in equation (5).
However, in equation (5) the meanfield order parameters are
those that minimize the free energy, and are hence time
independent, whereas in equation (16) the order parameters
in general do not correspond to an equilibrium condition and
are time dependent. This makes the analysis of equation (16)
difficult. However, our main concern here is to determine
the local, instantaneous stability of equation (15), for which
we only need to know if a certain fluctuation around an
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instantaneous value ofA~G, will grow or decay. For this
purpose, it suffices to analyze the growth rate matrix on the
right-hand side of equation (16). This is the same matrix as
the quadratic coefficient in equation (5) multiplied by¹ 2l,

and its analysis thus can be performed following the same
procedure as outlined in Section 2. In particular, the
locations of the least stable fluctuation modes ink-space
remain the same; but the stability of these modes now
depends on the instantaneous value ofA~G. When all
eigenvalues of the matrix are negative, the meanfield path
is stable, and when one or more eigenvalues turn positive,
the meanfield path becomes unstable, signalling the
emergence of new structure. The new structure should
now be represented by adding the most unstable modes to
the meanfield order parameter.

We now use these theoretical ideas to discuss the kinetics
of phase transitions after a sudden temperature jump, using
the LAM to HEX and HEX to DIS transitions as concrete
examples.

Consider the LAM to HEX transition first. We start from
a well-ordered LAM structure in equilibrium at (Nx) i in
the LAM region of the phase diagram characterized by a
one-dimensional sinusoidal wave with wavevector~G and
amplitudeA~G. Now imagine making a temperature jump,
i.e., decreasingNx to (Nx) f in the HEX region of the phase
diagram, beyond the spinodal limit of the LAM phase. Due
to the deviation from equilibrium,A~G will evolve according
to equation (15). However, even though (Nx) f is now
beyond the spinodal of the LAM phase, the initial stage of
the evolution is a simple decay of the LAM order parameter,
i.e. the evolution is well described by equation (15) and the
fluctuations, the largest of which are located on the rings
in Figure 2, are still stable, due to the large value ofA~G. This
is shown inFigure 4where we plot the growth exponent of
the least stable fluctuation mode as a function of the lamellar
order parameterA~G (A~G is chosen to be negative to satisfy
the correct phase relationship). For large, negative values of
A~G, the exponent is negative. AsA~G decays (according to
equation (15)) the deterministic driving force decreases and,
at some point, the fluctuation becomes unstable, and new
structures corresponding to the two rings inFigure 2begin
to emerge. Note that the onset of the instability, i.e.
deflection from the meanfield path, occurs before the system
reaches a saddle point.

The above-described scenario is in agreement with
the result obtained from direct numerical simulation of the
Ginzburg–Landau equation*.Figure 5 shows the simula-
tion result for the temporal behaviour of a global order
parameter defined as

Q¼

������������������∑
~r

w(~r)2

s
¼

����������������������∑
~k

wkw¹ k

s
for a temperature jump from (Nx) i ¼ 12.0 to (Nx) f ¼ 11.03.
The initial rapid decrease in the order parameter as well as
the plateau that follows are well described by the meanfield
equation (equation (15)). Direct visual inspection of the
gray level plot of the microstructure during this stage does
not reveal any specific structure within the lamellar layers.
Thus the system remains in the lamellar phase, with a
decreased order parameter. At the end of the plateau, how-
ever, the global order parameter increases, and at the same
time in-layer density undulations begin to emerge as shown
in Figure 6b. This signals the instability of the meanfield
path and the growth of the fluctuation mode. Note that the
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Figure 4 Growth rate of the least stable fluctuation modesL (in units of
l) as a function of the LAM order parameter atf ¼ 0.35 and (Nx) f ¼ 15.0.
After a temperature jump,A~G evolves in the direction of decreasinglA~Gl.
The saddle point of the LAM at thisNx value is atA~G ¼ ¹ 0:1911

Figure 5 Temporal evolution of the global order parameterQ during the
LAM to HEX transition atf ¼ 0.45 for the temperature jump from (Nx) i ¼
12.0 to (Nx) f ¼ 11.03

Figure 6 Microstructural evolution after a temperature jump from LAM
to HEX at f ¼ 0:45 ((Nx) i ¼ 12.0, (Nx) f ¼ 11.03); data taken at various
stages of the simulation

* In the numerical simulation, we used a constant local mobility coefficient
in equation (7); we also used a free energy which differs slightly from the
Leibler free energy equation (2). There we focus on the qualitative rather
than quantitative agreements.



fluctuations have a periodicity in thez-direction of twice
the lamellar spacing; this is in excellent agreement
with the prediction that the most unstable modes are on
the rings at

kz ¼ 6 1
2 k*

seeFigure 2.
We now discuss the HEX to DIS transition, this time

starting with the simulation results.Figure 7 shows the
evolution of the global order parameter for two temperature
jumps. For the large temperature jump to (Nx) f ¼ 10.97, the
order parameter decays in a simple manner, suggesting
direct melting of the cylinders. Gray level plots of the order
parameter at various times show no structure change as the
cylinder melts.

In contrast, the behaviour ofQ in the case of the smaller
temperature jump (to (Nx) f ¼ 11.15) suggests a nontrivial
melting process. The slower decay at intermediate times is
accompanied by the formation of structures along the
cylinders: the cylinders seem to first break into spheres and
the melting proceeds via this modulated hexagonal cylinder
(MHC) phase. This transient structure is clearest between
the two inflection points on the curve, because at long times
the structure has all but melted and at short times the
structure is dominated by the hexagonal cylindrical
structure of the initial state.Figure 8 shows the transient
MHC state.

These two qualitatively different behaviours can be
understood by analyzing the stability of the meanfield
equation (equation (15)). For the large temperature jump,
fluctuations are stable along the entire path. On the other
hand, for the smaller temperature jump, fluctuations become
unstable on certain parts of the meanfield path. These two
different behaviours are shown by plotting the growth rate
of the least stable modes as a function of the order parameter
of the HEX wave; seeFigure 9. Since the least stable
fluctuations form a twinning BCC structure (or BCC
structure if we restrict to perfect periodic structures), the
growth of the fluctuation modes leads to the appearance of
a modulated hexagonal cylinder (MHC) structure which
is the superposition of the HEX and BCC waves. A critical
value of the finalNx can be located that separates these two
different kinetic behaviours. The result is

(Nx)c ¼ (Nx)* ¹ 2g2
3=(5g4), where(Nx)* ¼ 1

2S
¹ 1
0 (k* )

(for f ¼ 0:4, (Nx)c ¼ 10:97)

For (Nx) f . (Nx)c, a nontrivial pathway for the HEX to DIS
transition is expected, where the cylinders will first go
through an MHC structure before melting; whereas if
(Nx) f , (Nx)c, a direct featureless melting is expected.
These behaviours are captured inFigure 9: the curve for
the smaller temperature jump to (Nx) f ¼ 11.15 has two
deflection points suggesting a ridgelike structure on the
free energy surface between these two points (seeFigure
13) while the curve for the larger temperature jump to
(Nx) f ¼ 10.97 indicates that the fluctuations are stable, con-
sistent with a simple melting of the HEX structure.

3.2 Beyond the linear regime: a simplified multimode
analysis

The linear stability analysis in Section 3.1 yields
information about whether the meanfield path is stable,
when it becomes unstable, and if it does become unstable
in which direction the system will evolve. However, further
evolution of these fluctuation into a three-dimensional
structure cannot be predicted by such a linear stability
analysis.

In this section, we describe a simplified multimode
analysis, which, although lacking in mathematical rigor,
has the merit of being physically intuitive, and captures
essentially all the qualitative dynamical behaviours revealed
by our computer simulation studies. This analysis was first
proposed by us in Refs4,5, based on symmetry and physical
intuition. Here we provide a more rigorous justification.

We have shown in Section 2 and Section 3.1, that the
largest fluctuation modes of an ordered phase are located at
positions in k-space usually different from those corres-
ponding to the meanfield order parameter of the initial
structure. When the meanfield kinetic path becomes unstable,
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Figure 7 Evolution of the global order parameterQ for the temperature
jump from the HEX to DIS phase atf ¼ 0.4 with (Nx) i ¼ 11.71

Figure 8 Intermediate state during the HEX to DIS transition atf ¼ 0.4
((Nx) i ¼ 11.71, (Nx) f ¼ 11.15), taken att ¼ 1000

Figure 9 Growth rate of the least stable fluctuation modesL (in units of
l) as a function of the HEX order parameter atf ¼ 0.4 for two final values
of Nx. After a temperature jumpA~G evolves in the direction of decreasing
lA~Gl. For the smaller temperature jump ((Nx) f ¼ 11.15), the meanfield
kinetic path becomes unstable at the first deflection point and, between the
two deflection points, the free energy surface has a ridgelike feature



these fluctuation will grow and will become part of the new
order parameter. This suggests that one can construct an
expanded order parameter space that includes both the
original order parameter and the dominant fluctuation
modes. In the weak segregation limit, both the order
parameter and the fluctuation are dominated by modes
with l~kl¼ k*. Thus we choose a set of wavesA~G with
wavevectorsl~Gl¼ k*. If we restrict our consideration to
spatially periodic structures, a minimal set of wavevectors
that can represent the LAM, HEX, BCC, as well as
intermediate states during the transitions are the 12 first-
order reciprocal lattice wavevectors of a BCC lattice. These
wavevectors are shown inFigure 10. The order parameter
is then represented by

w(~r) ¼
∑
~G

A~G exp(i ~G·~r) (17)

where theA~G values are the amplitudes associated with the
wavevectors~G (we use the same notationA~G for both
the order parameter of the initial structure and the dominant
fluctuation modes). By considering only periodic structures,
we may chooseA~G to be real; thenA

¹ ~G ¼ A~G. In this con-
struction, the LAM phase is represented by a nonzero
A~G1

( ¼ A
¹ ~G1

) with all other amplitudes being zero; the
HEX phase is obtained by either the wavevectors
~G1, ~G2, ~G3, or ~G1, ~G5, ~G6; the BCC phase requires all
six wavevectors with equal amplitudes. Evolution of the
order parameter is then described by

]A~G

]t
¼ ¹l

(
S¹ 1

0 (k* ) ¹ 2Nx
� �

A~G þ
g3

2

∑
~G9

A~G9
A~G¹ ~G9

þ
g4

6

∑
~G9

∑
~G0

A~G9
A~G0

A~G¹ ~G9 ¹ ~G0

)
þ h~G(t): ð18Þ

This is the same equation as equation (15), except that now
{ A~G} includes both the order parameter of the original struc-
ture and the dominant fluctuation modes.

Note that, in this representation, the locations of the
fluctuation modes are consistent with the result of
anisotropic fluctuation. For example, fluctuations on the
lamellar phase with a wavevector~G1 are captured by
the wavevectors~G2, ~G3, ~G5, ~G6, which reside on the ring
identified inFigure 2. The fact that here we have a discrete
mode of fluctuation, instead of the continuum of modes on
the ring from the previous analysis, is of little consequence
at the linear order of the fluctuation. For example, the same
spinodal is predicted independent of the number of modes
used. (This is generally true in any linear stability analysis.)
Thus, the simplified mode analysis is consistent with the full
analysis in Section 2 and Section 3.1 at the level of linear
stability analysis, but has the advantage of allowing a simple
qualitative description of the system in the nonlinear
regime.

In Figure 11 we show the temporal evolution of the
various modes for the LAM to HEX transition after a sudden
temperature jump, obtained by a direct numerical inte-
gration of equation (18). (For simplicity, we included the
random noise term in the initial conditions for the various
modes, but did not keep it during the simulation; this
turned out not to have qualitative effects on the dynamical
behaviours.) The kinetic path starts with a rapid decrease of
the lamellar order parameter which then quickly turns to a
plateau. During this initial phase, the amplitudes of the other
modes remain small. Thus the system remains in a lamellar
state. At the end of the first plateau, the other modes (which
in the case of LAM represent the anisotropic fluctuations)
begin to grow and at the same time the amplitude of the
lamellar wave undergoes another drop. The system then
reaches another plateau. On this plateau, the amplitudes
A~G2

( ¼ A~G3
) andA~G5

( ¼ A~G6
) are degenerate; they bifurcate

towards the end of this plateau whenA~G2
merges with the

lamellar waveA~G1
while A~G5

and A~G4
decrease to zero to

form the hexagonal cylinder structure. This stagewise
behaviour is consistent with the full simulation results
(Figure 5). (The durations of the plateau are subject to the
specific realization of the noise terms and hence are not
particularly meaningful.) Evolution of the microstructure
is well captured by superposing the various modes. In
particular, taking the order parameters in the transition
region between the first and second plateaus, and in the
middle of the second plateau, respectively, we reproduce
the two intermediate states, the modulated lamellar
and perforated lamellar structures, observed inFigure 6b
andFigure 6c.

In Figure 12, we show a phase portrait in terms of
A~G1

( ¼ A~G2
¼ A~G3

) and A~G5
( ¼ A~G4

¼ A~G6
) for the HEX to

DIS transition in the case of a shallow temperature jump.
The transient growth ofA~G5

is the result of the instability
discussed in Section 3.1. While the linear analysis there
predicted that the fluctuation modes (which are part of a
BCC or twinning BCC lattice) would grow at some point
along the kinetic path, the nonlinear analysis presented
here allows us to predict the full trajectory of the system.
Figure 12 depicts the full pathway of the system starting
from a HEX structure, going through a transient BCC-
modulated hexagonal state, and eventually melting to the
DIS state.

Using the extended set of order parameters, one can
construct a simple free energy function. The free energy
landscape in this order parameter space offers some
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Figure 10 The 12 first-order wavevectors for a BCC structure

Figure 11 Evolution of the wave amplitudes during the LAM to HEX
transition atf ¼ 0:45 ((Nx) i ¼ 12.0, (Nx) f ¼ 11.03). Note the appearance of
two plateaus beside the final HEX state



additional insight into the nature of the kinetic pathways.
For example, the two plateaus inFigure 11 for the LAM
to HEX transition are seen to correspond to two saddle
points in the free energy surface. The first plateau is near
the point where the fluctuations around the lamellar
structure become unstable. These fluctuations (captured in
the current analysis byA~G2

and A~G5
) lead to correlated

lateral modulations in the lamellar structure which grow
into a perforated lamellar (PL) structure. The second plateau
corresponds to such a PL structure which is itself another
saddle point; the most unstable direction being the
bifurcation betweenA~G2

and A~G5
which leads to the final

HEX structure. The nature of the PL structure has been
discussed in our recent publication17.

In the case of the HEX to DIS transition, a study of the
free energy shows that the landscape (in the parameter space
of A~G1

andA~G5
) has two qualitatively different appearances

depending on the extent of the temperature jump. For (Nx) f

¼ 10.97 corresponding to the larger temperature jump, the
free energy surface is parabolic with a simple minimum
at A~G1

¼ 0 andA~G5
¼ 0. However, for (Nx) f ¼ 11.20, the

free energy surface has a ridgelike feature as shown in
Figure 13. The transient appearance of the BCC-modulation
during the melting of the hexagonal cylinders is thus a result
of deflection from the direct downhill path,A~G5

¼ 0.
Though we have discussed only the LAM to HEX and

HEX to DIS transitions explicitly, the analyses (in both
Section 3.1 and Section 3.2) can be applied to studying other
transitions as well.

4. DISCUSSION

In this paper, we have described a unified approach to
understanding the various order–order and order–disorder

transitions in weakly ordered diblock copolymers. Our
theory is based on the concept of anisotropic fluctuations
of the order parameter in the ordered structures. The
emergence of new structures, whether they are the final
equilibrium structures, or transient structures on the kinetic
pathways, is due to the growth of the most unstable
fluctuation modes. A systematic linear stability analysis is
presented both for the equilibrium states—in order to locate
the spinodal of the initial structure and identify the least
stable fluctuation modes—and for nonequilibrium states
where the thermodynamic driving force is nonvanishing. In
the latter case, it is shown that the thermodynamic driving
force can be separated into a meanfield, deterministic
contribution that governs the evolution of the meanfield
order parameter associated with the initial structure, and a
fluctuating contribution that determines the stability of
the meanfield path and is responsible for the emergence
of new structures. The linear stability analysis allows us to
determine the stability of the meanfield path for any given
value of the meanfield order parameter of the kinetic
path. By combining the largest fluctuation modes and the
order parameter of the initial structure into an expanded
order parameter space, we are able to describe qualitatively
the full nonlinear evolution of the system during the various
transitions.

In recent years, there have been a number of experi-
ments aimed at probing various dynamical aspects of
the order–order and order–disorder transitions in block
copolymers18–27. However, experiments that directly
address the kinetic pathways after temperature jumps are
few and are perhaps difficult. Nevertheless, some tentative
comparisons can be made between theory and experiments
where such comparisons are appropriate.

We start with the shear cessation experiments of Bates
and co-workers25. In one of these experiments, an initially
disordered phase of asymmetric poly(ethylenepropylene)–
poly(ethylethylene) (PEP–PEE) diblock copolymer close
to the order–disorder boundary is subjected to a constant
shear which induces a transition to the HEX phase (with the
cylinders aligned along the shear direction). The shear is
suddenly stopped, and the system is now in a condition
favouring the DIS phase. These authors observed that the
cylinders first break into spheres before melting to the DIS
phase, much akin to what we find after a temperature jump.
Insofar as a HEX phase is created and then the condition is
changed to favouring the DIS phase, the shear-cessation
experiment can be likened to a temperature jump experi-
ment. We believe the mechanism described in this paper is
responsible for their observations.

The HEX to BCC transition has also been studied by
Bates and co-workers24. These authors showed that BCC
spheres pinch off from the HEX cylinders such that the
cylinder’s axis is the (111) direction of the resulting BCC
structure which they term the ‘epitaxial’ relationship. They
also suggested that the BCC phase forms by way of an
undulating cylinder structure. These are in agreement with
our mechanism4,5.

Thermally induced LAM to HEX transition has been
studied by Hajduket al.23 for the poly(styrene–b-ethene-
co-butene) diblock copolymer. However, these authors did
not observe the appearance of the intermediate modulated/
perforated lamellar structure predicted by our theory and
simulation (seeFigure 6). We have shown earlier5 that a
distinct intermediate PL structure appears only in a certain
temperature window in the LAM to HEX transition; see
Fig. 15 of Ref.5. It is possible that the temperature jump in
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Figure 12 Phase portrait for the HEX to DIS transition for a temperature
jump from (Nx) i ¼ 11.71 to (Nx) f ¼ 11.20 atf ¼ 0:4. The nonzero initial
A~G5

is due to the initial perturbation

Figure 13 The ridgelike structure of the free energy surface for (Nx) f ¼
11.20 andf ¼ 0.4



the experiment is too large for a distinct intermediate PL to
appear, but further studies are needed to fully resolve the
discrepancy between theory and experiment.

On the other hand, the perforated lamellar (PL) structures
have been observed in several experiments by Bates’
group28–30 in regions of the phase diagram between the
LAM and HEX or the G phase. In a very recent paper by
Hajduk et al.31, an extensive series of new experiments
demonstrate quite convincingly that the PL is a kinetic state
en route from the LAM phase to the HEX or the G phase,
thus providing indirect evidence of our proposed LAM to
HEX transition mechanism. Although further studies are
required, we found, both through direct computer simula-
tion, and through theoretical analysis, that the PL state
during the transition from LAM to HEX after a temperature
jump can be made metastable by a sudden temperature
quench back to the initial temperature: instead of going back
to the LAM phase, the system gets trapped in a metastable
PL state. It is possible that the PL structures reported by
Bates and co-workers, that had been initially thought to be
equilibrium phases, were in fact kinetically trapped states
due to a combination of thermal and shear operations used
in the experiments.

As concluding remarks, we mention two outstanding
issues related to fluctuations in ordered block copolymer
phases and kinetics of order–order and order–disorder
transitions. The first issue concerns the renormalization
effects due to nonlinear fluctuations on the stability of the
ordered phases. The Brazovskii–Fredrickson–Helfand
theory32,33 assumes isotropic fluctuations and treats these
fluctuations by a simple Hartree approximation. Although
capable of capturing several new qualitative features,
including the prediction that the DIS to LAM transition
becomes first order, the theory cannot be an accurate
description of the ordered phases. It is thus of interest to
study the effects of nonlinear anisotropic fluctuations. The
anisotropic fluctuation effects will be most pronounced for
asymmetric compositions due to the renormalization from
theg3-term, which is absent in the isotropic Hartree theory.
In addition to shifts in the phase boundaries, an interesting
issue is whether the spinodals of the ordered phases
predicted from the linear theories (the theory in this work
and that in Refs6,7) can survive the renormalization.

Another issue concerns the effects of shear flow.
Experimentally it is much more convenient to cross phase
boundaries by applying a flow field than by changing the
temperature. Changes in the small-angle neutron scattering
patterns of ordered block copolymer phases due to shear
have been demonstrated in several experiments by the
Bates’ group28–30. These results reflect the distortion of
the spectrum of anisotropic fluctuations. However, no
theory is currently available. We plan to address the effects
of shear flow on anisotropic fluctuations and the various
spinodals, first by a linear theory and then by a renormal-
ized theory that accounts for the nonlinear, anisotropic
fluctuations.
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